Wednesday, August 27, 2014

From Triangle to Heart and Beyond

Hearts, pears, shields and the like can be some of the most challenging designs to cut—lots of steps. Nearly 21 years ago, I did a design called the Tri-Heart, design 10.037 found on www.facetdiagrams.org. To design this, I started with 3-fold, mirror-image symmetry on the pavilion. Recently a designer named Roland Arajs started with my Tri-Heart and played some more with the symmetry, creating his Vortex Tri-Heart. This inspired me to take another look at morphing other triangular designs into a hearts.

When designing and cutting a heart, there are two important advantages to starting with a triangular design. First, you can end up with a design that is easier to cut. With the usual 1-fold, mirror-image symmetry of a heart, you only get to cut one or two facets at the same angle and mast (or platform) height. This means lots of steps with a lot of time spent changing the settings on your machine and more chances for mistakes. With 3-fold, mirror-image symmetry, you can cut up to six facets at the same angle and mast height. With a suitable design (and careful dopping), the cutting sequence can be much simpler.

The second advantage is with optical performance. When light rays hit a pavilion that is a three-sided pyramid in shape with steeper angles than usual, interesting things happen. Many light rays bounce three times off pavilion facets instead of the usual two and then return to exit the crown. The result is better scintillation and better performance when the stone is tilted. This can be particularly beneficial for materials of lower refractive index—quartz, R.I=1.54, or even lower, glass, opal, fluorite, etc.

I started out with Trilliant C 13.067 by Basil Watermeyer, calculated by Norm Steele. The symmetry wasn't quite complete in the design in the database, so I tweaked it. I made the corners less sharp, moved some meets around. I optimized the angles for quartz, (but they also work well unchanged for CZ). Note the steep angles on the pavilion. This is to take advantage of the three-bounce principle. I duplicated angles wherever possible. I also made sure the steps 1 and 2 facets on the pavilion meet at a temporary center point, so it's easy to make the outline. I posted the design on www.facetdiagrams.org as design 13.067D. Here is a screenshot:
The next step on our path to a heart shape is to round off all three corners. Now we really only need to round off two corners for our heart, but if we round off all three, we can take advantage of GemCad's 3-fold symmetry to get six facets for the price of one. (We only need 4 four the price of one, but we'll return the extra two later). Below is the result. I call this version the Bulgy Trilliant. I posted this on www.facetdiagrams.org as design 13.175.
We are nearly there. To get a heart shape, we need only delete the "rounding" facets on the bottom corner and cut a flat on the top. Here is my Trilliant Heart. I posted it as design 10.060.

Note that the girdle line is not level on the flat side. You can carve a notch in the flat side if you have the equipment and know-how. There are just 15 steps, including the girdle and table!

Finally, what if we just round off one corner of our Trilliant? The result is my Trilliant Shield, which I posted as 23.063.

This is a re-cut option for a triangle with a chipped corner. You might notice that I kept the step names for all four designs. The heart is the only one with step 5.


Monday, August 25, 2014

Adapting the Cushport On the Fly for L/W=1.25

This post builds on the previous one, so please read that post first. The length-to-width given in the header of the diagram is L/W=1.356, but let's say we want to cut it for L/W=10 mm by 8 mm=1.25 instead.

How to get started? When cutting on your faceting machine, you could start by cutting the stone to width. Cut the two step 1 facets at 90° at index settings 96 and 48. Alternate until the width is about 8.5 or 9 mm (to allow for progressing to finer laps). Then cut the four step 2 facets at 90° at 20-28-68-76. Alternate until length is 10.5 or 11 mm again allowing you to "sneak up" on the final 10 mm width when you pre-polish.

How to proof-cut the outline in GemCad? The trick is to type in some coordinate points in GemCad's Points field in the 90° New Facet Info box. First a review of GemCad's coordinate system. GemCad's x axis increases to the right, and the y axis coordinate increases down in GemCad's top view. The z coordinate increases up out of the screen. GemCad's coordinate system is in arbitrary units, not millimeters. A cube of two units on a side is about as big as will fit on the screen. Our 8 by 10 stone needs to extend from -1 to 1 on the axis and from -0.8 to 0.8 on the axis.

Set the Symmetry to 2-fold, mirror-image. Next, enter the point (0, 0.8, 0) on any of the 3 lines of the Points field of the New Facet Info box by typing "0 0.8 0" without the quotes. Whenever the mouse focus changes, GemCad will reformat it, adding in decimal point and some zeroes. Then enter an Angle of 90° and an Index of 96. Click the Apply/Cut button, and GemCad will cut the pair of girdle facets at 96-48.

Next, enter the point (1,0,0) by typing "1 0 0" without the quotes on any of the 3 lines in the Points field. Then enter an Angle of 90° and an Index of 20. GemCad will cut four more girdle facets, and our girdle outline should be a long hexagon. You should see L/W=1.250 at the bottom status line. You might have noticed that the coordinates were zero. Why zero? Well, the z coordinate is arbitrary since girdle facets are parallel to the line of sight in the top view, so our z coordinates could have been anything, and 0 is easy to type.

OK. Now we need to cut our last set of four girdle facets. On the faceting machine, cut facets at 90°at 04-44-52-92. How deep? Cut until the outline shape looks pleasing and until you cut away any flaws and you get 4 good corners.

In GemCad, you can just set a point by eye to cutting depth. Another way is to enter the Center-to-Facet Distance. This is the distance from the center of the stone, the point (0, 0, 0) to the plane of the facet. When your protractor is set at 90°, this is the distance from the axis of the dop to the plane of the lap. On some faceting machines, you can read off this distance with a scale. I found that for this L/W, a center-to-facet distance of 0.85 gave a pleasing outline, to my eye. Type in 0.85 in the Center-to-Facet Distance box. Enter an Angle of 90°and an Index of 4, and GemCad will cut the last 4 girdle facets.

On the faceting machine, for our 8 by 10 mm stone, another way to reproduce this shape is to cut until the opposing facets are 8.5 mm apart (rough cut to 9 or 9.5 mm apart) with the calipers flat to the opposing facets.

Here is our girdle outline:




Now let's cut the rest of the pavilion using our diagram at the end of the last program--the one with the wrong L/W.




Not too bad, considering. Now we have some decisions to make. If I were cutting a valuable piece of rough, I probably wouldn't worry too much about the bad meets at 3 and 5. After all, in a commercial appraisal, good meets don't add to the value of the stone. If the poor meets bother you, you can make them meet by using your cheater when pre-polishing or even polishing. In GemCad, you can fix them by giving GemCad 3 points and letting it figure out the index and angle. Note that we could get facet labeled Y to meet by lowering its angle and leaving its index alone. However, if you click on points 4 and 6, put your cursor inside facet Y, click and select Uncut/Recut, you will find that the angle needed is below the critical angle for quartz. It would be fine for corundum, though. If you click on points 4, 5 and 6, selecting Use to Cut each time, then click in Y and click Uncut/Recut, and click the Apply/Cut button, GemCad will change mostly the index instead of angle. Similarly you can do the same thing for points 1, 2, and 3 and facet X. Here is the result:




Facet X ended up at 56.5 at index 6.7. Facet Y ended up 42.2 at index 21.2.

at With GemCad, you can label the opposite girdle facets with the same number, and GemCad will show that flat-to-flat dimension in the table of dimensions. Here, I labeled both of them 3, and it shows (3 3)/W=1.062 in the table of dimensions. For our stone, with W=8 mm, this dimension is 1.0625 x 8 = 8.50 mm. This corresponds to our 0.85 center-to-facet distance that we typed in.

Now we can transfer and cut the crown. When we use the angles and indices for the wrong L/W, we get the following:



Facet Z can be re-cut, cheating to meet points 1, 2, and 3. Here is the result:

While not the prettiest arrangements of facets, everything meets up, and the resulting stone will be pleasing. For reference, facet Z ended up at 27.6° at index 18.6.

Another possibility for this design is the idea of cutting to constant mast height instead of constant angle. Notice that this design has several sets of facets cut to the same angle but at different mast heights. Since this is a generic design, we could equally well cut adjacent steps using the same mast height but slightly different angles without changing the general look of the design. Depending on which adjustment is easier, it might make sense to leave the mast height alone and adjust the angle instead.

So, what have we learned? Meetpoint faceting is not always the best approach--adapting on the fly to the shape of the rough, eliminating flaws as you go is a valuable skill. By proof-cutting with GemCad, you can work out ideas for how to adapt on the fly. With this design, you can save all of the adjustments to the very end by cheating in one or two key sets of facets. If you want to make this design fully meetpoint for your L/W of choice, GemCad gives you the tools to do this. Diagonal measurements can be a useful preforming technique.

Tuesday, August 19, 2014

Cutting the Cushport—Design L/W

Here is my Cushport design from my previous post for L/W=1.356, as downloaded from www.facetdiagrams.org.
Note the diagonal dimension:
 (2 2)/W=1.058
To get GemCad to display this diagonal dimension in the table of dimensions, label opposing facets on the girdle with the same name. See in the bottom view where there are two facets labeled 2? Anytime GemCad sees two parallel girdle facets at the same mast height labeled the same, it will add this diagonal dimension to the table of dimensions. It is important to note that this is not the distance from the tips of the arrows but is the distance you would measure if you put the jaws of your caliper flat against both the indicated facets. It's the distance between the planes of the two facets.

So how to we use these diagonal dimensions? Let's say, for the sake of discussion that we are cutting a piece of rough and we think we can get a stone of length 13 mm. The width for this pattern would be 13/1.356=9.59 mm. First off, make sure that the rough is at least this size. When cutting, we could cut step 1 facets alternately until we get to 9.59 mm (allowing an additional half to one mm to grind away when prepolishing). Then cut step 3 facets until we get our length 13 mm (plus some extra). Then cut step 2 facets alternately. But how deep? The diagonal dimension gives us a clue. Cut them alternately until the diagonal dimension measures 1.058*W=1.058*13/1.356=10.14 mm. Again, this dimension is not the distance between the tips of the arrows but is instead be measured with the jaws of the caliper measured flat to the girdle facets.

How to proof-cut the outline in GemCad? The trick is to type in some coordinate points in GemCad's Points field in the 90° New Facet Info box. First a review of GemCad's coordinate system. GemCad's x axis increases to the right, and the y axis coordinate increases down in GemCad's top view. The z coordinate increases up out of the screen. GemCad's coordinate system is in arbitrary units, not millimeters. A cube of two units on a side is about as big as will fit on the screen. Our stone needs to extend from -1 to 1 on the axis and from -W/L to W/L on the axis. For our example, W/L=1/1.356=0.7375.

Set the Symmetry to 2-fold, mirror-image. Next, enter the point (0, 0.7375, 0) on any of the 3 lines of the Points field of the New Facet Info box by typing "0 0.7375 0" without the quotes. Whenever the mouse focus changes, GemCad will reformat it, adding in decimal point and some zeroes. Then enter an Angle of 90° and an Index of 96. Click the Apply/Cut button, and GemCad will cut the pair of girdle facets at 96-48. 

Next, enter the point (1,0,0) by typing "1 0 0" without the quotes on any of the 3 lines in the Points field. Then enter an Angle of 90° and an Index of 20. GemCad will cut four more girdle facets, and our girdle outline should be a long hexagon. You should see L/W=1.356 at the bottom status line. You might have noticed that the coordinates were zero. Why zero? Well, the z coordinate is arbitrary since girdle facets are parallel to the line of sight in the top view, so our z coordinates could have been anything, and 0 is easy to type.

To get the other girdle facets, we have to make use of the diagonal dimension. We will use the concept of Center-to-Facet Distance. This is the distance from the center of the stone, the point (0, 0, 0) to the plane of the facet. When your protractor is set at 90°, this is the distance from the axis of the dop to the plane of the lap. On some faceting machines, you can read off this distance on a calibrated ruler. In GemCad, we'll have to do a bit of math. Recall that our stone's length, the x coordinate goes from -1 to 1, so L=2 GemCad units. Our width W is 2 divided by L/W. W=2/1.356. Our diagonal dimension is 1.058W = 1.058*2/1.356. The center-to-facet distance is exactly half this distance, so it is 1.058/1.356=0.7802.

Enter 0.7802 in the Center-to-Facet Distance box, an Angle of 90° and an Index of 4, and GemCad will  finish the girdle outline. From here on, the design is pure meetpoint.

In my next post, we'll look at how to adapt this design for other L/W, even adapting it "on the fly."

Wednesday, August 13, 2014

Rectangular Portuguese-Style Cushion Cut

First I started with a square version I did last year. You can find this one on facetdiagrams.org.

To turn our square cushion into a rectangular cushion, we will in effect saw the stone in two along the two red lines, throw away the part in between and glue the two halves back together. To do this in GemCad, first download the file from facetdiagrams.org, open it in GemCad. After you open the file, move your cursor to the point highlighted in yellow above. Left click. Click Use to Cut. Then recenter the stone about this point. Do Edit->Center menu command, and do the following:



  1. Check the Y checkbox
  2. Check the Use point 1... radio button
  3. Click OK

GemCad will offset the stone. Then reflect the bottom half. Do Edit->Reflect, check the Y checkbox and press OK. You should get something that looks like this:

Then you can recenter and re-scale. Do Edit->Center with the default choices and press OK. This will in effect lengthen the dopstick, sliding the stone along its axis until the stone's center of mass is at the center of the side view. Then do Edit->Scale, check the All box and press the Automatic button. Hint: It's a good idea to do these two steps to any design before you save it. This will center it pleasingly and make it as large as will easily fit on the screen.

Then you should get something that looks like this:
OK. This was pretty straightforward. However, the table is too skinny, to my eye, at least. The easiest way to fix this is to cut the table deeper, cutting off step G in the process. Move your mouse pointer to the meetpoint highlighted. Left click and click the Use to Cut button. In the New Facet Info box, enter an angle of 0 and click the Apply/Cut button. GemCad will warn you about cutting off facets. Answer No to the question about saving them to preform.

I don't really like the keel on the bottom, so let's get rid of facet 10. Put your cursor inside facet 10 so that whole facet is highlighted. Left click and click the Delete Tier button. Also, you might notice that our new lowest angle facet, labeled 9 is at 45°. We really want this to be around 42° (quartz or beryl) or 41° (everything higher in R.I.). Click in the facet labeled 9 and type 42 (or whatever culet angle you want) in the new angle box and click the Apply button.

OK, we have all of the facets. Let's work some on the cutting order. Do Edit->Sort and select Girdle-Pavilion-Crown for the order. Then do Edit->Rename in order and select the default choice. The result is the following.

I have to admit that I left out some steps. I went back and edited the angles to round them to the nearest half of a degree. To do this, I clicked on a meetpoint I wanted to preserve for a facet, clicked inside the facet, made a mental note of its rounded angle, clicked Uncut/Recut. Then I typed the rounded angle in the Angle box and clicked Apply/Cut to re-cut at the new angle. (The Uncut/Recut process preserves the index number). I did this for all of the pavilion facets.

I posted this design on facetdiagrams.org. I called it "Cushport." It is design number 08.146. You can download it there.

In my next blog post, I'll talk about the cutting sequence for this design.



Welcome!

This blog is about how I use my computer program, GemCad, to design faceted gemstones. Faceted gemstones are mostly transparent, often colored, minerals that are cut with flat, polished faces, or facets. GemCad is a computer-aided design program that runs on all versions of Windows from Windows XP or later. The final output of GemCad is a faceting diagram with a picture and table of angles that you can cut the design using a commercial faceting machine. You can learn more about GemCad on my website, gemcad.com.

I will also refer to GemCad designs downloadable from facetdiagrams.org an online library of facet designs. At the date of this writing, it has over 1500 designs you can view, download and open with GemCad.

I will be posting some rather esoteric design techniques, mostly aimed at intermediate-to-advanced users of GemCad, but I'll try to throw in some beginner topics as well.

You might also be interested in my YouTube channel. It has tutorials on GemCad and companion program GemRay.


About Me


I am Robert W. Strickland. I got interested in faceting in the late 1970s. My father, Bob Strickland, was a quadriplegic, a victim of the last wave of the polio epidemic before the vaccine was released. He had little arm strength but was spared nearly full use of his hands. He was a stay-at-home dad for me and my older brother. My mom taught school. He kept himself busy with various hobbies. He took up faceting. We learned how to do lost-wax casting. I cut a couple of round stones but immediately wanted to cut something different--ovals and other shapes. I got interested in facet design as a way to join my dad in his hobby. I am not all that much interested in cutting. I have cut, it's just that I don't get the same enjoyment out of it that I get from designing. We taught ourselves how to do lost-wax casting. We would often collaborate. I would help with design, my dad would make a wax pattern, I would cast it, and he would finish it, setting the stones he cut himself.

I have a bachelor's degree in physics. I started out in engineering. I found that to be not theoretical enough for my tastes. I was also interested in art, so for one semester, I was an art major. I took freshman art classes and took several jewelry classes. After I switched ot physics, I got special permission from the art department to continue taking jewelry classes.

My main career has been in the oilfield services industry in the field of well logging. Specifically, I have worked in the design and signal processing of tools that measure the earth's electrical resistivity, mostly induction logging tools. I program in C, C++, Python, HTML, Java, and Fortran. I took some Fortran classes in the late 1970s but am mostly self-taught in the other languages. Programming for me has always involved math and physics.

I developed a predecessor to GemCad, written in Fortran, in the mid 1980s that ran on a minicomputer. It wasn't until after my father's death in 1988 that I rewrote and released a DOS version of GemCad. It was then that I was befriended by my mentor, Walt Carss. At that time, Walt was the president of the Texas Facetors' Guild. He was one of the founders of the United States Facters' Guild. Walt introduced me to the worldwide community of faceters and did much to encourage me in the hobby. GemCad for Windows followed in 2002.

I live in Austin, Texas. I am happily married to a wonderful woman named Dorothy. We have two grown children. I am active in my local church. I sing in the choir and play handbells. I volunteer at an elementary school in a low-income neighborhood.

A few years back, I got addicted to building and playing ukuleles. I have built several tin ukuleles from lunch boxes, children's purses and decorative tins. I have built others out of gourds. I have restored several period ukes. I am now finishing an off-grid solar, house, insulated with strawbales that we hope to move into when we retire.